Abstract
Today, hyperthermophilic (‘superheat-loving’) bacteria and archaea are found within high-temperature environments, representing the upper temperature border of life. They grow optimally above 80°C and exhibit an upper temperature border of growth up to 113°C. Members of the genera, Pyrodictium and Pyrolobus , survive at least 1 h of autoclaving. In their basically anaerobic environments, hyperthermophiles (HT) gain energy by inorganic redox reactions employing compounds like molecular hydrogen, carbon dioxide, sulphur and ferric and ferrous iron. Based on their growth requirements, HT could have existed already on the early Earth about 3.9 Gyr ago. In agreement, within the phylogenetic tree of life, they occupy all the short deep branches closest to the root. The earliest archaeal phylogenetic lineage is represented by the extremely tiny members of the novel kingdom of Nanoarchaeota, which thrive in submarine hot vents. HT are very tough survivors, even in deep-freezing at −140°C. Therefore, during impact ejecta, they could have been successfully transferred to other planets and moons through the coldness of space.