Directional preponderance in human optokinetic nystagmus

Abstract
In afoveate animals, and in neonatal or cortically deficient foveate animals, monocular optokinetic nystagmus (OKN) is controlled by directly innervated subcortical nuclei and occurs only in response to temporonasal motion. In higher mammals, the subcortical nuclei receive direct inputs predominantly from the nasal hemiretinae and indirect inputs from the visual cortex. These indirect inputs counterbalance the directional asymmetry of the primitive mechanism. These facts lead to the prediction that the velocity of the slow phase of OKN in the normal human adult should be higher for stimuli moving centripetally rather than centrifugally in each monocular and binocular hemified. The predicted patterns of directional preponderance were found in both monocular and binocular hemifields. Directional asymmetries were still present in monocular hemifields when the central retina was occluded and were reduced when the stimulus was confined to a narrow central strip of the visual field. These results are discussed in terms of the contributions of the central and peripheral retina to directional preponderance.