Nuclear efflux of heterogeneous nuclear ribonucleoprotein C1/C2 in apoptotic cells: a novel nuclear export dependent on Rho-associated kinase activation

Abstract
Using a proteomic approach, we searched for protein changes dependent on Rho-associated kinase (ROCK) during phorbol-12-myristate-13-acetate (PMA)-induced apoptosis. We found that heterogeneous nuclear ribonucleoprotein C1 and C2 (hnRNP C1/C2), two nuclear restricted pre-mRNA binding proteins, are translocated to the cytosolic compartment in a ROCK-dependent manner in PMA-induced pro-apoptotic cells, where nuclear envelopes remain intact. The subcellular localization change of hnRNP C1/C2 appears to be dependent on ROCK-mediated cytoskeletal change and independent of caspase execution and new protein synthesis. Such a ROCK-dependent translocation is also seen in TNFα-induced apoptotic NIH3T3 cells. By overexpressing the dominant active form of ROCK, we showed that a ROCK-mediated signal is sufficient to induce translocation of hnRNP C1/C2. Deletion experiments indicated that the C-terminal 40-amino-acid region of hnRNP C1/C2 is required for ROCK-responsive translocation. By using nuclear yellow fluorescent protein (YFP) fusion, we determined that the C-terminal 40-amino-acid region of hnRNP C1/C2 is a novel nuclear export signal responsive to ROCK-activation. We conclude that a novel nuclear export is activated by the ROCK signaling pathway to exclude hnRNP C1/C2 from nucleus, by which the compartmentalization of specific hnRNP components is disturbed in apoptotic cells.