Nested Pseudo-likelihood Estimation And Bootstrap-based Inference For Structural Discrete Markov Decision Models

  • 1 January 2006
    • preprint
    • Published in RePEc
Abstract
This paper analyzes the higher-order properties of nested pseudo-likelihood (NPL) estimators and their practical implementation for parametric discrete Markov decision models in which the probability distribution is defined as a fixed point. We propose a new NPL estimator that can achieve quadratic convergence without fully solving the fixed point problem in every iteration. We then extend the NPL estimators to develop one-step NPL bootstrap procedures for discrete Markov decision models and provide some Monte Carlo evidence based on a machine replacement model of Rust (1987). The proposed one-step bootstrap test statistics and confidence intervals improve upon the first order asymptotics even with a relatively small number of iterations. Improvements are particularly noticeable when analyzing the dynamic impacts of counterfactual policies.

This publication has 0 references indexed in Scilit: