THE EVOLUTION OF SPERM SIZE IN BIRDS

Abstract
Sperm size varies enormously among species, but the reasons for this variation remain obscure. Since it has been suggested that swimming velocity increases with sperm length, earlier studies proposed longer (and therefore faster) sperm are advantageous under conditions of intense sperm competition. Nonetheless, previous work has been equivocal, perhaps because the intensity of sperm competition was measured indirectly. DNA profiling now provides a more direct measure of the number of offspring sired by extrapair males, and thus a more direct method of assessing the potential for sperm competition. Using a sample of 21 species of passerine birds for which DNA profiling data were available, we found a positive relation between sperm length and the degree of extrapair paternity. A path analysis, however, revealed that this relationship arises only indirectly through the positive relationship between the rate of extrapair paternity and length of sperm storage tubules (SSTs) in the female. As sperm length is correlated positively with SST length, an increase in the intensity of sperm competition leads to an increase in sperm length only through its effect on SST length. Why females vary SST length with the intensity of sperm competition is not clear, but one possibility is that it increases female control over how sperm are used in fertilization. Males, in turn, may respond on an evolutionary time scale to changes in SST size by increasing sperm length to prevent displacement from rival sperm. Previous theoretical analyses predicting that sperm size should decrease as sperm competition becomes more intense were not supported by our findings. We suggest that future models of sperm-size evolution consider not only the role of sperm competition, but also how female control and manipulation of ejaculates after insemination selects for different sperm morphologies.
Funding Information
  • Natural Sciences and Engineering Research Council of Canada
  • Biotechnology and Biological Research Council
  • Leverhulme Research Fellowship