Abstract
The cyclic AMP (cAMP) suppressor mutation (csm) of Escherichia coli has been cloned from strain NCR30 in the HindIII-EcoRI site of pBR322. This mutation has been mapped in or near the crp gene. Wild-type crp DNA hybridized to recombinant plasmids pGM5 and pGM25 containing the cloned csm mutation. These recombinant plasmids encoded a protein product of identical molecular weight and charge as that of the wild-type cAMP receptor protein. Transformants of cya crp deletion strains harboring pBM5 or pGM25 exhibited phenotypic characteristics common to strain NCR30. These included the expression of catabolite-repressible enzymes, such as arabinose isomerase, tryptophanase, beta-galactosidase, and threonine deaminase; the expression of chemotactic and motility genes; cAMP sensitivity; and the accumulation of toxic levels of methylglyoxal. DNA sequence analysis indicated that the Csm suppressor phenotype was attributable to the insertion of a guanosine residue 17 base pairs downstream from the termination codon of the crp structural gene. The guanosine insertion is located in the stem region of the presumed transcriptional termination loop. This stem region contained a unique BssHII restriction site which was used to construct an in vitro deletion in the wild-type crp insert in plasmid pHA7. The resulting plasmid, pGM459, renders transformants having a phenotype common to that conferred by the chromosomal or cloned csm mutation. Our results indicate a novel role for the 3' flanking region of the crp structural gene in the expression of the cAMP receptor protein.