Hering–Breuer inflation reflex in young and adult mammals

Abstract
The apnea following lung inflation (Hering–Breuer expiratory promoting reflex) is a vagally mediated reflex which is initiated by the activation of pulmonary stretch receptors (PSR) and terminated by the interaction of several factors, which include adaptation of PSR, chemical stimuli, level of anaesthesia, and body temperature. Since PSR activity is determined by the changes in airway tension, the interpretation of the strength of vagal reflexes on the basis of changes in lung volume rather than transpulmonary pressure can be misleading when the mechanical properties of the respiratory system are not constant. In this study we compared the reflex apnea resulting from lung inflation of young and adult mammals, the respiratory system of which have very different mechanical properties. If the response is compared on the basis of similar changes in lung volume, it can be considered weaker or stronger in the young depending upon the normalizing parameter used. However, when considered on the basis of the relative changes in transpulmonary pressure, which better reflects the activation of PSR, the reflex is weaker in young rats and rabbits than in their adult counterparts and similar in dogs. The analysis of the underlying mechanisms suggests a weaker vagal contribution in the young animal, but a satisfactory conclusion requires a better knowledge of the factors which, in the younger animals, result in the termination of the apnea.