Molecular Reorientation in the Plastic Crystalline Phase of Tris

Abstract
Carbon-13 N.M.R. spectra of tris(hydroxymethyl)aminomethane (Tris) have been measured between 407 and 461 K. Proton-decoupled 13C N.M.R. spectra of solid Tris between 407 K and its melting point are relatively sharp (v� < 30 Hz) indicating rapid overall molecular reorientation in this temperature range. It was not possible to detect a 13C N.M.R, signal for Tris below 407 K. The observed 13C N.M.R. spin-lattice relaxation times appear continuous across the solid ↔ liquid phase transition. From the temperature dependence of T1, a rotational activation energy of 51.6 � 6 kJ mol-1 is calculated, which indicates that the molecules must expend considerable energy in reorienting. The N.M.R. results are discussed in relation to previous differential scanning calorimetry and X-ray diffraction data which indicate that Tris undergoes a solid ↔ solid transition at 407 K.

This publication has 0 references indexed in Scilit: