Complex subspaces of homogeneous complex manifolds II—Homotopy Results
- 1 June 1982
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 86, 101-129
- https://doi.org/10.1017/s0027763000019814
Abstract
The Lefschetz hyperplane section theorem has roots going back at least to Picard, but it was Lefschetz [20] who first stated and proved it in the modern form for integer homology. Later it was improved up to the homotopy level by Andreotti-Frankel [1] and Bott [8] using an idea of Thorn. Numerous generalizations along the same lines have appeared, e.g. [14, Theorem H], [19], [24, App. II] etc.Keywords
This publication has 23 references indexed in Scilit:
- Local Cohomological Dimension in Characteristic pAnnals of Mathematics, 1977
- q-konvexe Restmengen in kompakten komplexen MannigfaltigkeitenMathematische Annalen, 1976
- Vektorbündel vom rang 2 über dem n-dimensionalen komplex-projektiven raummanuscripta mathematica, 1975
- Larsen’s theorem on the homotopy groups of projective manifolds of small embedding codimensionPublished by American Mathematical Society (AMS) ,1975
- A decomposability criterion for algebraic 2-bundles on projective spacesInventiones Mathematicae, 1974
- Varieties of small codimension in projective spaceBulletin of the American Mathematical Society, 1974
- Transplanting Cohomology Classes in Complex-Projective SpaceAmerican Journal of Mathematics, 1970
- Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projektiven RaumMathematische Annalen, 1970
- On a theorem of Lefschetz.The Michigan Mathematical Journal, 1959
- Quasifaserungen und Unendliche Symmetrische ProdukteAnnals of Mathematics, 1958