Ultrashallow p+-n junctions formed by diffusion from an RTCVD-deposited B:Ge layer

Abstract
The rapid thermal chemical vapor deposition of heavily boron-doped Ge layers on silicon substrates is characterized and optimized for the purpose of ultrashallow junction applications. Incorporation of a very high concentration of boron in the Ge layer is observed with a moderate flow rate (2 - 20 sccm) of 1% B2H6 in hydrogen. The surface coverage of the B:Ge layer depends strongly on the B2H6 flow rate, favoring higher content of boron for better coverage. The substrate temperature during deposition also shows a strong effect on the film morphology with 550 degree(s)C yielding the most uniform surface.

This publication has 0 references indexed in Scilit: