Perfluorocarbon-associated gas exchange in normal and acid-injured large sheep
- 1 March 1996
- journal article
- Published by Wolters Kluwer Health in Critical Care Medicine
- Vol. 24 (3) , 475-481
- https://doi.org/10.1097/00003246-199603000-00018
Abstract
We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange. Prospective, observational animal study and prospective randomized, controlled animal study. An animal laboratory in a university setting. Thirty adult ewes. Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated after injury in control animals. Hemodynamics were not influenced by the institution of perfluorocarbon-associated gas exchange. Tidal volume and end-inspiratory pressure directly influence oxygenation during perfluorocarbon-associated gas exchange in large animals. Minute ventilation influences clearance of CO2. In adult sheep with acid aspiration lung injury, perfluorocarbon-associated gas exchange at an FIO2 of <1.0 supports oxygenation and improves intrapulmonary shunting, without adverse hemodynamic effects, when compared with conventional gas ventilation.Keywords
This publication has 8 references indexed in Scilit:
- Perfluorocarbon-associated gas exchange improves pulmonary mechanics, oxygenation, ventilation, and allows nitric oxide delivery in the hypoplastic lung congenital diaphragmatic hernia lamb modelCritical Care Medicine, 1995
- Partial liquid ventilation in premature lambs with respiratory distress syndrome: Efficacy and compatibility with exogenous surfactantThe Journal of Pediatrics, 1995
- Cardiorespiratory effects of perfluorocarbon-associated gas exchange at reduced oxygen concentrationsCritical Care Medicine, 1995
- Perfluorocarbon-associated gas exchange in gastric aspirationCritical Care Medicine, 1994
- Long-Term Partial Liquid Ventilation (PLV) with Perflubron in the Near-Term Baboon NeonateArtificial Cells, Blood Substitutes, and Immobilization Biotechnology, 1994
- Oxygenation During Perfluorocarbon Associated Gas Exchange in Normal and Abnormal LungsArtificial Cells, Blood Substitutes, and Immobilization Biotechnology, 1994
- Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome A prospective, randomized, controlled studyCritical Care Medicine, 1993
- Perfluorocarbon-associated gas exchangeCritical Care Medicine, 1991