Abstract
Resting membrane potentials of rabbit right ventricular papillary muscles were measured in modified Tyrode's solutions that were isotonic (1.0 X T), hypertonic (1.58 X T), or hypotonic (0.76 X T) at eight different concentrations of external potassium, [K]o, ranging from 0.78 to 100 mM. The amount of hyperpolarization produced by exposure to the hypertonic solutions was relatively constant with an average of 4.6 mv at all levels of [K]o except 0.78 and 1.56 mM. This potential change is much less than the 10.6 mv which would be predicted if the papillary muscles behaved as nearly perfect osmometers and the activity coefficient of intracellular potassium (K) remained constant. The amount of depolarization produced by exposure to the 0.76 X T hypotonic solutions averaged 6.8 mv at all levels of [K]o except 0.78 mM; this value is close to the predicted value of 6.9 mv. Variations in the activity and the activity coefficient of intracellular K were introduced to explain these discrepancies. We estimated that t...