Classification of crystal lattices
- 1 September 1972
- journal article
- research article
- Published by Cambridge University Press (CUP) in Mathematical Proceedings of the Cambridge Philosophical Society
- Vol. 72 (3) , 325-349
- https://doi.org/10.1017/s0305004100047162
Abstract
There are two natural ways in which to attempt a classification of the lattices which occur in crystallography or, more generally, of n-dimensional lattices. The first method is algebraic and proceeds by classifying the symmetry groups of the lattices. Thus an n-dimensional lattice is a discrete subgroup of Rn and determines a symmetry group which is a subgroup of the orthogonal group On. Two lattices T1 and T2 are said to determine the same crystal system if the symmetry groups G(T1) and G(T2) are conjugate: that is there exists a linear isomorphism ø: Rn → Rn such thatThis publication has 7 references indexed in Scilit:
- Finite orthogonal symmetryTopology, 1970
- Compactification of Arithmetic Quotients of Bounded Symmetric DomainsAnnals of Mathematics, 1966
- Bravais lattices in four-dimensional spaceActa Crystallographica, 1963
- The Homology of Kummer ManifoldsProceedings of the American Mathematical Society, 1956
- The homology of Kummer manifoldsProceedings of the American Mathematical Society, 1956
- Die Reduktionstheorie Der Positiven Quadratischen FormenActa Mathematica, 1956
- Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen.Journal für die reine und angewandte Mathematik (Crelles Journal), 1850