Harmonic gauge in canonical gravity
- 15 November 1991
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 44 (10) , 3116-3123
- https://doi.org/10.1103/physrevd.44.3116
Abstract
The Isham-Kuchař representation theory of the spacetime diffeomorphism group in canonical geometrodynamics is implemented in the context of harmonic coordinate conditions. The representation is carried by either an extended phase space, consisting of the cotangent bundle over the space of three-metrics, spacelike embeddings, and Lagrange multipliers which serve to enforce the harmonic gauge in the action, or by a reduced space in which the multipliers are eliminated. The approach used here is applicable to any generally covariant theory and to any coordinate conditions. The physical interpretation of the diffeomorphism Hamiltonians is discussed and compared with the analogous interpretation given by us elsewhere in terms of Gaussian coordinate conditions.Keywords
This publication has 4 references indexed in Scilit:
- Gaussian reference fluid and interpretation of quantum geometrodynamicsPhysical Review D, 1991
- World sheet diffeomorphisms and the canonical stringJournal of Mathematical Physics, 1989
- Representations of spacetime diffeomorphisms. I. Canonical parametrized field theoriesAnnals of Physics, 1985
- Dynamics of tensor fields in hyperspace. IIIJournal of Mathematical Physics, 1976