A comparison of the secondary structure of human brain mitochondrial and cytosolic ‘malic’ enzyme investigated by Fourier-transform infrared spectroscopy

Abstract
The secondary structure of human brain cytosolic and mitochondrial ‘malic’ enzymes purified to homogeneity has been investigated by Fourier-transform IR spectroscopy. The absorbance IR spectra of these two isoenzymes were slightly different, but calculated secondary-structure compositions were essentially similar (38% alpha-helix, 38-39% beta-sheet, 14% beta-turn and 9-10% random structure). These proportions were not affected by succinate, a positive effector of mitochondrial ‘malic’ enzyme activity. IR spectra indicate that the tertiary structures of human brain cytosolic and mitochondrial ‘malic’ enzymes are slightly different, and addition of succinate does not cause conformational changes to the tertiary structure of the mitochondrial enzyme. Thermal-denaturation patterns of the cytosolic and mitochondrial enzymes, obtained from spectra recorded at different temperatures in the absence or presence of Mg2+, suggest that the tertiary structure of both isoenzymes is stabilized by bivalent cations and that the cytosolic enzyme possesses a more compact tertiary structure.

This publication has 19 references indexed in Scilit: