Density gradients of trans‐synaptically labeled collicular neurons after injections of rabies virus in the lateral rectus muscle of the rhesus monkey
- 23 August 2002
- journal article
- research article
- Published by Wiley in Journal of Comparative Neurology
- Vol. 451 (4) , 346-361
- https://doi.org/10.1002/cne.10353
Abstract
We evaluated the two‐dimensional distribution of superior colliculus (SC) neurons visualized after retrograde transneuronal transport of rabies virus injected into the lateral rectus muscle of rhesus monkeys to test whether the density of projection neurons might play a role in the spatiotemporal transformation and vector decomposition. If this were the case, the number of horizontal eye movement‐related SC neurons should increase with their distance from the rostral pole of the SC and decrease with their distance from the representation of the horizontal meridian. Labeled neurons of the intermediate SC layers were counted inside a 1‐mm‐wide band that matched the horizontal meridian of the collicular motor map. Local areal densities were plotted against distance from the rostral SC pole. At 2.5 days after inoculation, there was no labeling in the SC. At 3 days, moderate labeling appeared on both sides, mostly in the intermediate layers. At 3.5 days, cell numbers substantially increased and the laminar distribution changed as cells appeared in the superficial SC layers. At 3 days, rostrocaudal density profiles were unimodal, with peaks at locations near 50 degrees (contralateral SC) and 25–30 degrees (ipsilateral SC) horizontal eccentricity. At 3.5 days, distributions were bimodal due to the appearance of a second high‐density region near the rostral pole of the SC. The distribution of SC neurons influencing the abducens nucleus, thus, was nonuniform. Caudal sites contained more neurons, but the experimentally observed density gradients were shallower than the theoretically predicted ones that would be necessary to fully account for the spatiotemporal transformation. Similarly, we studied the distributions of cell densities in the intermediate SC layers along an isoamplitude line (representing saccades of equal amplitudes but different directions). Consistent with theoretical estimates of the density gradients required for vector decomposition, we found that the concentrations of labeled cells were highest in the vicinity of the horizontal meridian but their decrease toward the periphery of the motor map was steeper than predicted. We conclude that SC cell density gradients cannot fully account for the spatiotemporal transformation and vector decomposition in the absence of an additional mechanism such as the previously demonstrated (Grantyn et al., [1997] Soc. Neurosci. Abstr. 23:1295; Moschovakis et al., [1998] J. Neurosci. 18:10219–10229) locus‐dependent weighting of the strength of efferent projections to the saccade generators. J. Comp. Neurol. 451:346–361, 2002.Keywords
This publication has 79 references indexed in Scilit:
- Spinal and brain circuits to motoneurons of the bulbospongiosus muscle: Retrograde transneuronal tracing with rabies virusJournal of Comparative Neurology, 1999
- Inter- and Intra-Laminar Distribution of Tectospinal Neurons in 23 MammalsBrain, Behavior and Evolution, 1993
- The laminar distribution of macaque tectobulbar and tectospinal neuronsVisual Neuroscience, 1992
- A Structural Basis for Hering's Law: Projections to Extraocular MotoneuronsScience, 1990
- Viruses as transneuronal tracersTrends in Neurosciences, 1990
- Descending pathways to the spinal cord: A comparative study of 22 mammalsJournal of Comparative Neurology, 1988
- Afferents to the abducens nucleus in the monkey and catJournal of Comparative Neurology, 1986
- Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbo-spinal tractExperimental Brain Research, 1982
- Cell bodies of origin of reticular projections from the superior colliculus in the cat: An experimental study with the use of horseradish peroxidase as a tracerJournal of Comparative Neurology, 1978
- Superior colliculus connections with the extraocular motor nuclei in the catJournal of Comparative Neurology, 1978