MR Angiography of Internal Carotid Arteries: Breath-Hold Gd-Enhanced 3D Fast Imaging with Steady-State Precession Versus Unenhanced 2D and 3D Time-of-Flight Techniques

Abstract
The purpose of this work was to compare Gd-enhanced breath-hold fast imaging with steady-state precession (Gd-FISP) with unenhanced time-of-flight (TOF) sequences in evaluating internal carotid arteries (ICAs). Thirty patients underwent three unenhanced TOF sequences [2D traveling saturation (Travelsat); 3D tilted optimized nonsaturated excitation (TONE); TOF 3D Multislab] and two breath-hold 3D Gd-FISP sequences with automated intravenous contrast agent injection (axial and coronal). ICAs were classified as normal (no stenosis); with mild ( DSA revealed 20 normal ICAs; 11 mild, 9 moderate, and 14 severe stenoses; and 2 occlusions. DSA and all MR angiography (MRA) sequences diagnosed the occlusion of four common carotid arteries. The TOF 2D overestimated 10 stenoses, TOF 3D TONE 9, and TOF 3D Multislab 5; Gd-FISP 3D overestimated only 2 of them, reaching the highest sensitivity and specificity for severe stenoses. Significant differences were found between the overestimation of Gd-FISP and each of the three unenhanced sequences (0.0020 Gd-FISP is an interesting, largely artifact-free improvement for MRA of ICAs.