The motion of buoyant elements in turbulent surroundings
- 1 May 1963
- journal article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 16 (01) , 1-16
- https://doi.org/10.1017/s0022112063000549
Abstract
In this paper a theoretical model of the motion of isolated buoyant elements in turbulent surroundings is introduced, which takes into account both the growth due to turbulent entrainment and a loss of buoyant fluid to the environment. On dimensional grounds the outflow velocity is taken to be constant and proportional to some characteristic turbulent velocity in the environment, while the entrainment velocity is proportional to the upward velocity of the element. Numerical solutions of the resulting non-dimensional equations of motion are presented, corresponding to a wide range of stabilities. Typically, an element in stable, neutral or moderately unstable surroundings at first grows and then is eroded away, but at a certain value of a stability parameter is extremely sensitive to the level of turbulence in the environment, which could therefore exert a controlling influence on the growth of buoyant elements in unstable conditions; large elements are more likely to grow when the level of turbulence is low.Keywords
This publication has 6 references indexed in Scilit:
- The spectrum of vertical velocity near the surfaceQuarterly Journal of the Royal Meteorological Society, 1960
- SPHERICAL VORTEX THEORY OF BUBBLE-LIKE MOTION IN CUMULUS CLOUDSJournal of Meteorology, 1959
- The motion in and around isolated thermalsQuarterly Journal of the Royal Meteorological Society, 1959
- Experiments on convection of isolated masses of buoyant fluidJournal of Fluid Mechanics, 1957
- Free and forced convection in the atmosphere near the groundQuarterly Journal of the Royal Meteorological Society, 1955
- Buoyant Motion in a Turbulent EnvironmentAustralian Journal of Physics, 1953