Dye-Sensitized SnO2 Electrodes with Iodide and Pseudohalide Redox Mediators

Abstract
Dye-sensitized mesoporous nanocrystalline SnO2 electrodes and the pseudohalogen redox mediator (SeCN)2/SeCN- or (SCN)2/SCN- or the halogen redox mediator I3-/I- were implemented for regenerative solar cell studies. Adsorption isotherms of the sensitizers Ru(deeb)(bpy)2(PF6)2, Ru(deeb)2(dpp)(PF6)2, and Ru(deeb)2(bpz)(PF6)2, where deeb is 4,4‘-diethylester-2,2‘-bipyridine, dpp is 2,3-dipyridyl pyrazine, and bpz is bipyrazine, binding to the SnO2 surface were well described by the Langmuir model from which the saturation coverage, Γ0 = 1.7 × 10-8 mol/cm2, and surface-adduct formation constant, Kad = 2 × 105 M-1, were obtained. Following excited-state interfacial electron transfer, the oxidized sensitizers were reduced by donors present in the acetonitrile electrolyte as shown by transient absorption spectroscopy. With iodide as the donor, a rate constant k > 108 s-1 was measured for sensitizer regeneration. In regenerative solar cells, it was found that the incident photon-to-current conversion efficiencies and open circuit voltages (Voc) were comparable for (SeCN)2/SeCN- and I3-/I- for all three sensitizers. The Voc varied linearly with the logarithm of the short circuit photocurrent densities (Jsc), with typical correlations of ∼50−60 mV/decade. Capacitance measurements of the SnO2 electrode in the presence of I3-/I-, (SeCN)2/SeCN-, or (SCN)2/SCN- are reported.

This publication has 34 references indexed in Scilit: