First-Order Transition in the Breakdown of Disordered Media

Abstract
We study the approach to global breakdown in disordered media driven by increasing external forces. We first analyze the problem by mean-field theory, showing that the failure process can be described as a first-order phase transition, similarly to the case of thermally activated fracture in homogeneous media. Then we quantitatively confirm the predictions of the mean-field theory using numerical simulations of discrete models. Widely distributed avalanches and the corresponding mean-field scaling are explained by the long-range nature of elastic interactions. We discuss the analogy of our results to driven disordered first-order transitions and spinodal nucleation in magnetic systems.
All Related Versions

This publication has 38 references indexed in Scilit: