The gene for erythropoietin receptor is expressed in multipotential hematopoietic and embryonal stem cells: evidence for differentiation stage-specific regulation.
Open Access
- 1 April 1992
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 12 (4) , 1815-1826
- https://doi.org/10.1128/mcb.12.4.1815
Abstract
The principal regulator of erythropoiesis is the glycoprotein erythropoietin, which interacts with a specific cell surface receptor (EpoR). A study aimed at analyzing EpoR gene regulation has shown that both pluripotent embryonal stem cells and early multipotent hematopoietic cells express EpoR transcripts. Commitment to nonerythroid lineages (e.g., macrophage or lymphocytic) results in the shutdown of EpoR gene expression, whereas commitment to the erythroid lineage is concurrent with or followed by dramatic increases in EpoR transcription. To determine whether gene activity could be correlated with chromatin alterations, DNase-hypersensitive sites (HSS) were mapped. Two major HSS located in the promoter region and within the first intron of the EpoR gene are present in all embryonal stem and hematopoietic cells tested, the intensities of which correlate well with EpoR expression levels. In addition, a third major HSS also located within the first intron of the EpoR gene is uniquely present in erythroid cells that express high levels of EpoR. Transfection assays show that sequences surrounding this major HSS impart erythroid cell-specific enhancer activity to a heterologous promoter and that this activity is at least in part mediated by GATA-1. These data, together with concordant expression levels of GATA-1 and EpoR in both early multipotent hematopoietic and committed erythroid cells, support a regulatory role of the erythroid cell-specific transcription factor GATA-1 in EpoR transcription in these cells. However, the lack of significant levels of GATA-1 expression in embryonal stem cells implies an alternative regulatory mechanism of EpoR transcription in cells not committed to the hematopoietic lineage.Keywords
This publication has 73 references indexed in Scilit:
- A functional c-myb gene is required for normal murine fetal hepatic hematopoiesisPublished by Elsevier ,1991
- Premature expression of the macrophage colony-stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture.The Journal of Experimental Medicine, 1991
- Characterization of murine erythropoietin receptor genesJournal of Molecular Biology, 1990
- Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF)Developmental Biology, 1990
- The cytokine networkImmunology Today, 1989
- A simple phase-extraction assay for chloramphenicol acyltransferase activityGene, 1988
- NUCLEASE HYPERSENSITIVE SITES IN CHROMATINAnnual Review of Biochemistry, 1988
- Macrophage cell lines transformed by the malignant histiocytosis sarcoma virus: Increase of CSF receptors suggests a model for transformationJournal of Cellular Physiology, 1987
- Increase in intracisternal A-type particles in Friend cells during inhibition of Friend virus (SFFV) release by interferon or azidothymidineExperimental Cell Research, 1978
- Intracellular immunoglobulin chain synthesis in non-secreting variants of a mouse myeloma: Detection of inactive light-chain messenger RNAJournal of Molecular Biology, 1974