Characterization of Novel Mycobacterium tuberculosis and Mycobacterium smegmatis Mutants Hypersusceptible to β-Lactam Antibiotics

Abstract
Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major β-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most β-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based β-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from β-lactamase deletion mutants) that are hypersusceptible to β-lactam antibiotics might reveal novel genes involved with other mechanisms of β-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine β-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode β-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan.

This publication has 50 references indexed in Scilit: