Relative dispersion in fully developed turbulence: from Eulerian to Lagrangian statistics in synthetic flows

Abstract
The effect of Eulerian intermittency on the Lagrangian statistics of relative dispersion in fully developed turbulence is investigated. A scaling range spanning many decades is achieved by generating a multi-affine synthetic velocity field with prescribed intermittency features. The scaling laws for the Lagrangian statistics are found to depend on Eulerian intermittency in agreement with a multifractal description. As a consequence of the Kolmogorov's law, the Richardson's law for the variance of pair separation is not affected by intermittency corrections.

This publication has 0 references indexed in Scilit: