The β-Secretase, BACE: A Prime Drug Target for Alzheimer's Disease
- 1 January 2001
- journal article
- review article
- Published by Springer Nature in Journal of Molecular Neuroscience
- Vol. 17 (2) , 157-170
- https://doi.org/10.1385/jmn:17:2:157
Abstract
Evidence suggests that the β-amyloid peptide (Aβ) is central to the pathophysiology of Alzheimer’s disease (AD). Amyloid plaques, primarily composed of Aβ, progressively develop in the brains of AD patients, and mutations in three genes (APP, PS1, and PS2) cause early onset familial AD (FAD) by directly increasing synthesis of the toxic, plaque-promoting Aβ42 peptide. Given the strong association between Aβ and AD, therapeutic strategies to lower the concentration of Aβ in the brain should prove beneficial for the treatment of AD. One such strategy would involve inhibiting the enzymes that generate Aβ. Aβ is a product of catabolism of the large TypeI membrane protein, amyloid precursor protein (APP). Two proteases, called β- and γ-secretase, mediate the endoproteolysis of APP to liberate the Aβ peptide. For over a decade, the molecular identities of these proteases were unknown. Recently, the γ-secretase has been tentatively identified as the presenilin proteins, PS1 and PS2, and the identity of the β-secretase has been shown to be the novel transmembrane aspartic protease, β-site APP cleaving enzyme 1 (BACE1; also called Asp2 and memapsin2). BACE2, a novel protease homologous to BACE1, was also identified, and together the two enzymes define a new family of transmembrane aspartic proteases. BACE1 exhibits all the properties of the β-secretase, and as the key rate-limiting enzyme that initiates the formation of Aβ, BACE1 is an attractive drug target for AD. Here, I review the identification and initial characterization of BACE1 and BACE2, and summarize our current understanding of BACE1 post-translational processing and intracellular trafficking. In addition, I discuss recent studies of BACE1 knockout mice and the BACE1 X-ray structure, and relate implications for BACE1 drug development.Keywords
This publication has 57 references indexed in Scilit:
- Prodomain Processing of Asp1 (BACE2) Is AutocatalyticPublished by Elsevier ,2001
- Mechanism of Inhibition of β-Site Amyloid Precursor Protein-cleaving Enzyme (BACE) by a Statine-based PeptidePublished by Elsevier ,2001
- A Splice Variant of β-Secretase Deficient in the Amyloidogenic Processing of the Amyloid Precursor ProteinPublished by Elsevier ,2001
- Coordinated Expression of β‐Amyloid Precursor Protein and the Putative β‐Secretase BACE and α‐Secretase ADAM10 in Mouse and Human BrainJournal of Neurochemistry, 2000
- Modeling of substrate specificity of the Alzheimer’s disease amyloid precursor protein β-secretase 1 1Edited by F. E. CohenJournal of Molecular Biology, 2000
- Identification of a Novel Aspartic Protease (Asp 2) as β-SecretaseMolecular and Cellular Neuroscience, 1999
- Amyloidogenesis in Alzheimer's disease: some possible therapeutic opportunitiesTrends in Pharmacological Sciences, 1992
- Amyloid β-peptide is produced by cultured cells during normal metabolismNature, 1992
- Amyloid β Protein Gene: cDNA, mRNA Distribution, and Genetic Linkage Near the Alzheimer LocusScience, 1987
- Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid proteinBiochemical and Biophysical Research Communications, 1984