Abstract
We introduce a class of dynamical systems on a Riemannian manifold with singularities having attractors with strong hyperbolic behavior of trajectories. This class includes a number of famous examples such as the Lorenz type attractor, the Lozi attractor and some others which have been of great interest in recent years. We prove the existence of a special invariant measure which is an analog of the Bowen-Ruelle-Sinai measure for classical hyperbolic attractors and study the ergodic properties of the system with respect to this measure. We also describe some topological properties of the system on the attractor. Our results can be considered a dissipative version of the theory of systems with singularities preserving the smooth measure.

This publication has 9 references indexed in Scilit: