Temperature fluctuations and heat flux in grid-generated isotropic turbulence with streamwise and transverse mean-temperature gradients

Abstract
A screen of closely spaced, parallel, thin wires was placed downstream of a grid generating nearly isotropic turbulence. The screen was normal to the flow and was heated in one of two modes: (1) periodically in time, to generate a train of transversely uniform streamwise thermal ramps, each with a uniform streamwise gradient, and (2) steadily, with transverse non-uniformity, to generate a uniform transverse thermal ramp. The simple temperature and temperature-gradient fluctuation statistical properties in both cases were found to be comparable to those encountered in earlier works with a steadily heated grid producing a uniform transverse thermal ramp. In both modes of heating the temperature fluctuations decreased initially behind the screen and then increased monotonically. The turbulent-heat-transfer correlation coefficient attained an asymptotic magnitude between 0.7 and 0.8 for both modes of heating. The skewness of the temperature-fluctuation derivative in the direction of the mean gradient was founded to be non-zero despite the absence of mean shear.