Generalized Stability Theory. Part I: Autonomous Operators

Abstract
Classical stability theory is extended to include transient growth processes. The central role of the nonnormality of the linearized dynamical system in the stability problem is emphasized, and a generalized stability theory is constructed that is applicable to the transient as well as the asymptotic stability of time-independent flows. Simple dynamical systems are used as examples including an illustrative nonnormal two-dimensional operator, the Eady model of baroclinic instability, and a model of convective instability in baroclinic flow. Abstract Classical stability theory is extended to include transient growth processes. The central role of the nonnormality of the linearized dynamical system in the stability problem is emphasized, and a generalized stability theory is constructed that is applicable to the transient as well as the asymptotic stability of time-independent flows. Simple dynamical systems are used as examples including an illustrative nonnormal two-dimensional operator, the Eady model of baroclinic instability, and a model of convective instability in baroclinic flow.

This publication has 0 references indexed in Scilit: