North Atlantic Storm Track Variability and Its Association to the North Atlantic Oscillation and Climate Variability of Northern Europe
Open Access
- 1 July 1997
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 10 (7) , 1635-1647
- https://doi.org/10.1175/1520-0442(1997)010<1635:nastva>2.0.co;2
Abstract
The primary mode of North Atlantic storm track variability is identified using rotated principal component analysis (RPCA) on monthly fields of root-mean-squares of daily high-pass filtered (2–8-day periods) sea level pressures (SLP) for winters (December–February) 1900–92. It is examined in terms of its association with 1) monthly mean SLP fields, 2) regional low-frequency teleconnections, and 3) the seesaw in winter temperatures between Greenland and northern Europe. The principal storm track component is characterized by high synoptic variability preferring one of two areas at any given time. The northeastern Atlantic center (identified by positive RPCA scores) is characterized by deep cyclones in the area extending from Iceland northeastward to the Norwegian and Barents Seas, whereas the Bay of Biscay center (negative scores) is linked to cyclone activity around that area and into the Mediterranean basin. Combined principal component analysis is used to link the high-frequency storm track pre... Abstract The primary mode of North Atlantic storm track variability is identified using rotated principal component analysis (RPCA) on monthly fields of root-mean-squares of daily high-pass filtered (2–8-day periods) sea level pressures (SLP) for winters (December–February) 1900–92. It is examined in terms of its association with 1) monthly mean SLP fields, 2) regional low-frequency teleconnections, and 3) the seesaw in winter temperatures between Greenland and northern Europe. The principal storm track component is characterized by high synoptic variability preferring one of two areas at any given time. The northeastern Atlantic center (identified by positive RPCA scores) is characterized by deep cyclones in the area extending from Iceland northeastward to the Norwegian and Barents Seas, whereas the Bay of Biscay center (negative scores) is linked to cyclone activity around that area and into the Mediterranean basin. Combined principal component analysis is used to link the high-frequency storm track pre...Keywords
This publication has 0 references indexed in Scilit: