Abstract
Many existing algorithms for obtaining the eigenvalues and eigenvectors of matrices would make poor use of such a powerful parallel computer as the ILLIAC IV. In this paper, Jacobi’s algorithm for real symmetric or complex Hermitian matrices, and a Jacobi-like algorithm for real nonsymmetric matrices developed by P. J. Eberlein, are modified so as to achieve maximum efficiency for the parallel computations.

This publication has 5 references indexed in Scilit: