Energy profile of the interconversion path between T-shape and slipped-parallel benzene dimers

Abstract
The energy profile of the interconversion path between the T-shape and slipped-parallel dimers has been studied by high level ab initio calculations. The CCSD(T) (coupled cluster calculation with single and double substitutions with noniterative triple excitations) interaction energy at the basis set limit has been estimated from the MP2 (the second-order Møller–Plesset calculation) interaction energy near the basis set limit and the CCSD(T) correction term using the 6-311G* basis set. The calculated CCSD(T) level energy profile has shown that the potential is very flat and the interconversion barrier height is very small (around 0.2 kcal/mol). The MP2 calculations using large basis sets near the basis set limit considerably overestimate the attraction of the slipped-parallel dimer, which indicates the importance of higher level electron correlation correction for studying the potential energy surface of the benzene dimer.

This publication has 52 references indexed in Scilit: