Disruption of Circumferential Actin Filament Causes Disappearance of Occludin from the Cell Borders of Rat Hepatocytes in Primary Culture without Distinct Changes of Tight Junction Strands.

Abstract
We investigated the relationship of actin filament organization to occludin and tight junction strands in primary cultured rat hepatocytes using an actin depolymerizing agent, mycalolide B. In control cultures, well-developed circumferential actin filaments and occludin immunoreactivity were observed on the most subapical plasma membrane of the cells, and tight junction strands formed well-developed networks in freeze-fracture replicas. In hepatocytes treated with 3 microM mycalolide B for 6 h, circumferential actin filaments and occludin immunoreactivity disappeared from the cell borders. However, there were no marked abnormalities of tight junction strands in freeze fracture replicas. Similar results were obtained from cells cultured in medium with 0.05 mM Ca2+ for 6 h. The close association of occludin with actin and the existence of intact tight junction strands that are virtually free of both occludin and actin suggest a physiological role of occludin, but not the other proteins forming the tight junction strands, in the linkage between actin cytoskeleton and tight junction.