Multiple Indices of Northern Hemisphere Cyclone Activity, Winters 1949–99

Abstract
The National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis is used to estimate time trends of, and analyze the relationships among, six indices of cyclone activity or forcing for the winters of 1949–99, over the region 20°–70°N. The indices are Eady growth rate and temperature variance, both at 500 hPa; surface meridional temperature gradient; the 95th percentile of near-surface wind speed; and counts of cyclones and intense cyclones. With multiple indices, one can examine different aspects of storm activity and forcing and assess the robustness of the results to various definitions of a cyclone index. Results are reported both as averages over broad spatial regions and at the resolution of the NCEP–NCAR reanalysis grid, for which the false discovery rate methodology is used to assess statistical significance. The Eady growth rate, temperature variance, and extreme wind indices are reasonably well correlated over the two major storm track reg... Abstract The National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis is used to estimate time trends of, and analyze the relationships among, six indices of cyclone activity or forcing for the winters of 1949–99, over the region 20°–70°N. The indices are Eady growth rate and temperature variance, both at 500 hPa; surface meridional temperature gradient; the 95th percentile of near-surface wind speed; and counts of cyclones and intense cyclones. With multiple indices, one can examine different aspects of storm activity and forcing and assess the robustness of the results to various definitions of a cyclone index. Results are reported both as averages over broad spatial regions and at the resolution of the NCEP–NCAR reanalysis grid, for which the false discovery rate methodology is used to assess statistical significance. The Eady growth rate, temperature variance, and extreme wind indices are reasonably well correlated over the two major storm track reg...