Alteration of 14C-Assimilate Partitioning in Leaves of Soybeans Having Increased Reproductive Loads at One Node
Open Access
- 31 July 1984
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 75 (4) , 887-890
- https://doi.org/10.1104/pp.75.4.887
Abstract
The objectives of this study were to determine if the partitioning of recently fixed carbon between starch and water-soluble compounds could be altered by increasing the pod load in the leaf axil, and if the presence of source leaves acropetal to such a node would influence the partitioning of carbon within the subtending leaf. Soybeans (Glycine max L. Merr. cv Hodgson 78) were grown to full-bloom in a controlled environment chamber, and then deflowered at all nodes except the eighth. This treatment resulted in an 83% increase in the number of pods at the eighth node. At 24 days after flowering, one-half of the treated plants were girdled above the untreated node. Forty-two hours later, the eighth trifoliolate was pulsed with 14CO2 and sampled for radiolabeled starch and water-soluble compounds (WSC) at 0.5, 2, 4, 8, 12, and 24th after labeling. When no girdling was applied above the increased pod load at the eighth node more label was accumulated by the pod walls (+6.9%) and seeds (+6.3%) when compared to the controls. Starch accumulation was not altered in the labeled leaf of the nongirdled plants. When the stem was girdled above the eighth node, significantly less starch was retained in the labeled leaf. Girdling also resulted in an increase in label accumulation by the pod walls (+5.4%) and seeds (+6.6%). These data suggest that the plant will change the distribution patterns of assimilate to supply added sink demand before altering the partitioning of recently fixed carbon in the subtending leaf.This publication has 8 references indexed in Scilit:
- Effect of Shortened Photosynthetic Period on 14C-Assimilate Translocation and Partitioning in Reproductive SoyeansPlant Physiology, 1984
- Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) LeavesPlant Physiology, 1982
- Stomatal Closure and Photosynthetic Inhibition in Soybean Leaves Induced by Petiole Girdling and Pod RemovalPlant Physiology, 1980
- Photosynthate Partitioning into Starch in Soybean LeavesPlant Physiology, 1979
- Photosynthate Partitioning in Soybean Leaves at Two Irradiance LevelsPlant Physiology, 1979
- Rapid Changes in Translocation Patterns in Soybeans following Source-Sink AlterationsPlant Physiology, 1979
- Effects of Sink Removal on Photosynthesis and Senescence in Leaves of Soybean (Glycine max L.) PlantsPlant Physiology, 1978
- Influence of Assimilate Demand on Photosynthesis, Diffusive Resistances, Translocation, and Carbohydrate Levels of Soybean LeavesPlant Physiology, 1974