Effect of temperature on diauxic growth with glucose and organic acids in Pseudomonas fluorescens

Abstract
Growth of Pseudomonas fluorescens in batch culture with glucose and organic acids resulted in typical diauxic responses at 30° C but no detectable diauxic lag at 5° C. At 30° C, organic acids were preferentially utilized during the first growth phase. Glucose utilization was delayed unitl onset of the second growth phase. Systems involved in direct uptake and catabolism of glucose responded in a manner compatible with respression by malate and/or its metabolites and induction by glucose and/or its metabolites. The oxidative non-phosphorylated pathway, through gluconate and 2-ketogluconate (2-KG) as intermediates, was not induced during either growth phase. At 5° C, growth with glucose and organic acids was biphasic but without diauxic lag. Organic acids were preferentially utilized during the first growth phase. Although carbon from glucose was not fully catabolized until onset of the second growth phase, glucose was oxidized to and accumulated extracellularly as gluconate and 2-KG during the first growth phase. No significant repression of glucose-catabolizing enzymes was observed during growth with organic acids in the presence of glucose. However, uptake activities for gluconate and 2-KG did not increase significantly until onset of the second growth phase. Thus, at low temperatures, psychrotrophic P. fluorescens oxidized glucose to extracellular 2-KG, while growing on preferred carbon sources. The 2-KG was then catabolized after depletion of the organic acid.

This publication has 37 references indexed in Scilit: