Carbon and Climate System Coupling on Timescales from the Precambrian to the Anthropocene

Abstract
Over a range of geological and historical timescales, warmer climate conditions are associated with higher atmospheric levels of CO2, an important climate-modulating greenhouse gas. Coupled carbon-climate interactions have the potential to introduce both stabilizing and destabilizing feedback loops into Earth's system. Here we bring together evidence on the dominant climate, biogeochemical and geological processes organized by timescale, spanning interannual to centennial climate variability, Holocene millennial variations and Pleistocene glacial-interglacial cycles, and million-year and longer variations over the Precambrian and Phanerozoic. Our focus is on characterizing, and where possible quantifying, internal coupled carbon-climate system dynamics and responses to external forcing from tectonics, orbital dynamics, catastrophic events, and anthropogenic fossil-fuel emissions. One emergent property is clear across timescales: atmospheric CO2 can increase quickly, but the return to lower levels through ...

This publication has 238 references indexed in Scilit: