Abstract
Originally a talk delivered at a conference on Bayesian statistics, this article attempts to answer the following question: why is most scientific data analysis carried out in a non-Bayesian framework? The argument consists mainly of some practical examples of data analysis, in which the Bayesian approach is difficult but Fisherian/frequentist solutions are relatively easy. There is a brief discussion of objectivity in statistical analyses and of the difficulties of achieving objectivity within a Bayesian framework. The article ends with a list of practical advantages of Fisherian/frequentist methods, which so far seem to have outweighed the philosophical superiority of Bayesianism.

This publication has 5 references indexed in Scilit: