Ciliary dynein of Paramecium tetraurelia: Photolytic maps of the three heavy chains

Abstract
The ciliate Paramecium tetraurelia presents a powerful system to define the structural basis for dynein functional diversity within a single cell. This analysis will depend on the biochemical resolution of the dynein proteins. As an important first step, the three heavy chains of the ciliary outer arm dynein of paramecium were characterized. Sucrose density gradient centrifugation in a high salt buffer separated the dynein into a 22S species, which contained the α and β heavy chains, and a 12S species, which contained the α chain as well as the inner arm dynein heavy chains. Both the 22S and 12S species retained enzymatic latency as indicated by stimulation of MgATPase activity by 0.1% Triton X-100. An unusual ATP-independent V1-like photolysis of only the β chain provided the basis for estimating that the β chain contributes almost half of the 22S MgATPase activity that is susceptible to V1 photolysis. The combination of the density gradient separation of the partially dissociated dynein and the ATP-independent V1-like photolysis of only the β chain led to the unambiguous assignment of the V1 photolytic products to the appropriate parent heavy chains. An estimate of the molecular sizes of the three heavy chains was obtained. The photolytic peptide maps, which define the ATP-binding domains, were determined for the three heavy chains.