Estimation procedures for structural time series models

Abstract
A univariate structural time series model based on the traditional decomposition into trend, seasonal and irregular components is defined. A number of methods of computing maximum likelihood estimators are then considered. These include direct maximization of various time domain likelihood function. The asymptotic properties of the estimators are given and a comparison between the various methods in terms of computational efficiency and accuracy is made. The methods are then extended to models with explanatory variables.