Rapid Changes in Throughput from Single Motor Cortex Neurons to Muscle Activity

Abstract
Motor cortex output is capable of considerable reorganization, which involves modulation of excitability within the cortex. Does such reorganization also involve changes beyond the cortex, at the level of throughput from single motor cortex neurons to muscle activity? We examined such throughput during a paradigm that provided incentive for enhancing functional connectivity from motor cortex neurons to muscles. Short-latency throughput from a recorded neuron to muscle activity not present during some behavioral epochs often appeared during others. Such changes in throughput could not always be attributed to a higher neuron firing rate, to more ongoing muscle activity, or to neuronal synchronization, indicating that reorganization of motor cortex output may involve rapid changes in functional connectivity from single motor cortex neurons to α-motoneuron pools.