Abstract
This study reports the isolation and characterization of the entire proopiomelanocortin (POMC) gene of the amphibian Xenopus laevis. The Xenopus POMC gene consists of three exons of which the main exon 3 codes for all of the bioactive domains of the precursor protein. Intron A (2.6 kb) separates the segments encoding the 5''-untranslated mRNA region and intron B (2.5 kb) interrupts the protein-coding sequence near the signal peptide coding region. In that this structural organization of the Xenopus POMC gene is similar to those of the mammalian genes, apparently the POMC gene has been remarkably stable during 350 million years of vertebrate evolution. A comparative analysis of the 5''-flanking sequences of the Xenopus and mammalian POMC genes reveals the presence of several conserved regions. One of these regions is homologous with sequences located upstream of the capping sites of other glucocorticoid-regulated genes and another region contains a segment reminiscent of a viral enhancer consensus sequence.