Abstract
Trifluoromethyl azide decomposes in a low-pressure flow system at rather high temperatures by splitting off N2. The nature of the resulting products depends largely on the wall material of the pyrolysis tube: using molybdenum above 1120 K, FCN is observed exclusively. Neither F2C=NF nor F3C-N=N-CF3 can be detected as intermediates by comparing their PE spectra with those continuously recorded while increasing the temperature. F3C-N = N - CF3 fragments already at 870 K to give N2 and F3C-CF3. The PE spectra of F3CN3 and F2C=NF are assigned based on MNDO calculations

This publication has 0 references indexed in Scilit: