The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity
- 1 June 2003
- journal article
- research article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 20 (3) , 477-500
- https://doi.org/10.1016/s0294-1449(02)00022-7
Abstract
We consider the Schrödinger equation in \mathbb{R}^{3} with nonlinearity concentrated in a finite set of points. We formulate the problem in the space of finite energy V , which is strictly larger than the standard H^1 -space due to the specific singularity exhibited by the solutions. We prove local existence and, for a repulsive or weakly attractive nonlinearity, also global existence of the solutions. Résumé: On considère l’équation de Schrödinger avec une nonlinéarité concentrée en un nombre fini de points. On formule le problème dans l’espace V d’énergie finie, qui contient strictement l’espace standard H^1 , à cause de la singularité spécifique des solutions. On prouve des résultats d’existence locale et même, pour une nonlinéarité répulsive ou faiblement attractive, l’existence globale des solutions.Keywords
This publication has 5 references indexed in Scilit:
- A Class of Nonlinear Schrödinger Equations with Concentrated NonlinearityJournal of Functional Analysis, 2001
- Quadratic Forms for Singular Perturbations of the LaplacianPublications of the Research Institute for Mathematical Sciences, 1990
- Invariance results for delay and Volterra equations in fractional order Sobolev spacesTransactions of the American Mathematical Society, 1987
- Nonlinear Schr dinger equations and sharp interpolation estimatesCommunications in Mathematical Physics, 1983
- On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general caseJournal of Functional Analysis, 1979