Poincaré Recurrences
- 1 October 1956
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 104 (1) , 1-5
- https://doi.org/10.1103/physrev.104.1
Abstract
In connection with the tracing of the origin of the apparent irreversibility exhibited by a class of simple mechanical systems, namely all multiply or conditionally periodic Hamilton-Jacobi systems, estimates are obtained for the Poincaré recurrence time of such a system in terms of the preassigned limits of error of the mechanical recurrence, . By applying the theory of diophantine approximations, the asymptotic fraction of the time a system spends in such recurrences is found exactly. These results allow further deductions concerning the fraction of time a given system obeys a strict version of the second law of thermodynamics, as well as the existence and order of magnitude of the average Poincaré recurrence time of a Gibbsian ensemble of such systems whose degrees of freedom are indistinguishable.
Keywords
This publication has 11 references indexed in Scilit:
- The Statistical Mechanical Aspect of H-TheoremProgress of Theoretical Physics, 1955
- The ehrenfests' wind-wood model in two dimensionsMathematical Proceedings of the Cambridge Philosophical Society, 1955
- The Statistical Aspect of Boltzmann's H-TheoremProceedings of the Physical Society. Section A, 1953
- A simple urn modelCommunications on Pure and Applied Mathematics, 1949
- Random Walk and the Theory of Brownian MotionThe American Mathematical Monthly, 1947
- Stochastic Problems in Physics and AstronomyReviews of Modern Physics, 1943
- Zu Hrn. Zermelo's Abhandlung „Ueber die mechanische Erklärung irreversibler Vorgänge”︁Annalen der Physik, 1897
- Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. ZermeloAnnalen der Physik, 1896
- Ueber einen Satz der Dynamik und die mechanische WärmetheorieAnnalen der Physik, 1896
- Ueber mechanische Erklärungen irreversibler Vorgänge. Eine Antwort auf Hrn. Boltzmann's „Entgegnung”︁Annalen der Physik, 1896