Hydrogen Reactions of Nodulated Leguminous Plants

Abstract
The interaction between the ATP-dependent evolution of H2 catalyzed by nitrogenase and the oxidation of H2 via a hydrogenase has been postulated to influence the efficiency of the N2-fixing process in nodulated legumes. A comparative study using soybean (Glycine max L. Merr.) cv. Anoka inoculated with either Rhizobium japonicum strain USDA 31 or USDA 110 and cowpea (Vigna unguiculata L. Walp.) cv. Whippoorwill inoculated with Rhizobium strain 176A27 or 176A28 cultured on a N-free medium was conducted to address this question. Nodules from the Anoka cultivar inoculated with USDA 31 evolved H2 in air and the H2 produced accounted for about 30% of the energy transferred to the nitrogenase system during the period of active N2 fixation. In contrast the same soybean cultivar inoculated with USDA 110 produced nodules with an active hydrogenase and consequently did not evolve H2 in air. A comparison of Anoka soybeans inoculated with the two different strains of R. japonicum showed that mean rates of C2H2 reduction and O2 consumption and mean mass of nodules taken at four times during vegetative growth were not significantly different.

This publication has 8 references indexed in Scilit: