Using Cluster Abundances and Peculiar Velocities to Test the Gaussianity of the Cosmological Density Field
Preprint
- 27 August 1997
Abstract
(Abridged) By comparing the frequency of typical events with that of unusual events, one can test whether the cosmological density distribution function is consistent with the normally made assumption of Gaussianity. To this end, we compare the consistency of the tail-inferred (from clusters) and measured values (from large-scale flows) of the rms level of mass fluctuations for two distribution functions: a Gaussian, and a texture (positively-skewed) PDF. Averaging the recent large-scale flow measurements, we find that observations of the rms and the tail at the 10 h^-1 Mpc scale disfavor a texture PDF at ~1.5 sigma in all cases. However, taking only the most recent measurement of the rms, that from Willick et al. (1997b), the comparison disfavors textures for low Omega_0=0.3, and disfavors Gaussian models if Omega_0=1 (again at ~1.5 sigma). Predictions for evolution of high temperature clusters can also be made for the models considered, and strongly disfavor Omega_0=1 in Gaussian models and marginally disfavor Omega_0=1 in texture models. Only Omega_0=0.3 Gaussian models are consistent with all the data considered.Keywords
All Related Versions
- Version 1, 1997-08-27, ArXiv
- Published version: The Astrophysical Journal, 494 (2), 479.
This publication has 0 references indexed in Scilit: