Potentiation of Ca2+ influx through NMDA channels by action potentials

Abstract
In pyramidal cells, somatic action potentials can propagate actively back into the apical dendrites and potentiate calcium influx at simultaneously activated glutamatergic synapses, presumably by relieving the voltage-dependent block of NMDA channels. We have used computer simulations to investigate the conditions under which this potentiation will be optimal. We find that a spike with a long duration and limited amplitude (peak of approximately -10 mV) will be most effective. A back-propagating action potential will achieve this form if the dendritic membrane has a low K+ channel density and a modest Na+ channel density (30-70 pS/microm2, similar to experimentally observed densities). The relative increase in calcium due to the backpropagating spike will be small, however, unless the accumulated calcium is rapidly removed.