Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

Abstract
Angular differential imaging is a high-contrast imaging technique that reduces quasi-static speckle noise and facilitates the detection of nearby companions. A sequence of images is acquired with an altitude/azimuth telescope while the instrument field derotator is switched off. This keeps the instrument and telescope optics aligned and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF is constructed from other appropriately-selected images of the same sequence and subtracted to remove quasi-static PSF structure. All residual images are then rotated to align the field and are combined. Observed performances are reported for Gemini North data. It is shown that quasi-static PSF noise can be reduced by a factor \~5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of acquired images. A total speckle noise attenuation of 20-50 is obtained for one-hour long observing sequences compared to a single 30s exposure. A PSF noise attenuation of 100 was achieved for two-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 8". For a 30-minute long sequence, ADI achieves 30 times better signal-to-noise than a classical observation technique. The ADI technique can be used with currently available instruments to search for ~1MJup exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

This publication has 0 references indexed in Scilit: