Some Physical and Chemical Properties of the Arctic Winter Aerosol in Northeastern Canada
- 1 June 1984
- journal article
- Published by American Meteorological Society in Journal of Climate and Applied Meteorology
- Vol. 23 (6) , 916-928
- https://doi.org/10.1175/1520-0450(1984)023<0916:spacpo>2.0.co;2
Abstract
Measurements spanning much of the particle size spectrum were made on the surface aerosol arriving at Igloolik, Northwest Territories, Canada during late February 1982. Vertical profiles of aerosol particle concentration were obtained during one day of the study period. Concentrations of Aitken nuclei and cloud condensation nuclei as well as the aerosol light-scattering coefficient were measured instrumentally several times a day. Inertial impaction systems were used to separate and collect particles for microscopic sizing and chemical analysis. Suspended and precipitating ice crystals were inertially collected on microscope slides. The aerosol observations were accompanied by observations of temperature, wind speed and direction, visibility and cloud type. An upper-air station at Hall Beach, μm diameter. There was little indication of any diurnal change in the particle concentration in this size range. A clear difference in the quality of the air reaching Igloolik was detected on 23 February. Associated with this was a doubling of the particle concentration while the apparent particulate mass increased from ∼6 to ∼11 μg m−3. Impacted aerosol particles were found to be composed of 15–50% water soluble compounds before 23 February and 40-100% after this date. Sulfate was the dominant ionic species in all cases. Vertical profiles of the large aerosol particles, obtained with an airborne nephelometer, suggested a slightly enhanced concentration at the surface and a uniform concentration in the lower troposphere. Profiles of Aitken nucleus concentrations pointed to a surface source of small nuclei which diffused vertically and independently of the larger particles. Suspended ice crystals may have accounted for a significant portion of the degradation in visibility observed throughout the study.Keywords
This publication has 0 references indexed in Scilit: