Rigid‐body docking with mutant constraints of influenza hemagglutinin with antibody HC19

Abstract
An automatic docking algorithm has been applied to the modeling of the complex between hemagglutinin from influenza virus and the Fab fragment of a monoclonal antibody raised against this antigen. We have introduced here the use of biochemical information provided by mutants of hemagglutinin. The docking procedure finds a small number of candidate solutions where three sites of escape mutations are buried and form hydrogen bonds in the interface. The localization of the epitope is improved by additional biochemical data about mutants that do not affect antibody binding. Five candidate solutions with low energy, reasonably well-packed interfaces, and six to ten hydrogen bonds are compatible with mutant information. One of the five stands out as generally better than the others from these points of views. © 1994 John Wiley & Sons, Inc.