Abstract
The G. I. Taylor dynamic compression test consists of firing a cylinder of the material to be tested at a target of hardened armor plate, and deducing the dynamic yield stress from the resulting deformation. In the interpretation of the results, interest is concentrated on the wave front of initial plastic straining. The present paper attempts the theoretical determination of the entire strain distribution in such a test cylinder of nickel-chrome steel, this material being chosen since the dynamic influence on the stress-strain relation is likely to be small, thus permitting the static relation to be used in the theory. Strain distributions deduced by two theoretical approaches compare satisfactorily with the distribution of strain obtained in such a dynamic compression test, thus justifying the assumption for this material at the speed considered. The treatment of this problem requires a theory of the propagation of plastic waves, which is developed in this paper, for the particular type of stress-strain curve pertaining to the high-strength alloy steel tested.

This publication has 0 references indexed in Scilit: